STEREOCONTROLLED TOTAL SYNTHESIS OF (±)-HYDROXY PATCHOULI ALCOHOL AND THE CORRESPONDING (k)-CARBOXYLIC ACID, METABOLITES OF PATCHOULI ALCOHOL, AND (±)-NORPATCHOULENOL

Haruki Niwa, Takashi Hasegawa, Norikazu Ban, and Kiyoyuki Yamada* Department of Chemistry, Faculty of Science, Nagoya University, Chikusa, Nagoya 464, Japan

Abstract. The first total synthesis of (t) -hydroxy patchouli alcohol (3) and the corresponding (t) -carboxylic acid 4, the biooxidation products of patchouli alcohol (2) has been achieved. (\pm)-Norpatchoulenol (1) has also been synthesized by the biogenetic route via 3 and 4.

Norpatchoulenol (L), a minor component isolated from patchouli oil, has been known as the real odoriferous substance of this essential oil and belongs to a novel tricyclic norsesquiterpene alcohol of patchoulane type. $^{\rm l}$

The biogenesis of norpatchoulenol (1) from patchouli alcohol (2), a major component of patchouli oil, as shown in Scheme I has been proposed by Ourisson based on the administration experiments of patchouli alcohol (2) to rabbits: in the experiments two biooxidation products were isolated, the structures of which were determined to be hydroxy patchouli alcohol (3) and the corresponding carboxylic acid $\frac{1}{4}$, respectively.² Recently microbial conversion of patchouli alcohol (2) into hydroxy patchouli alcohol (<u>3</u>) has been reported.³

1 (norpatchoulenol)

2 $R = CH_3$ (patchouli alcohol) $3 R = CH₂OH$ 4 R = COOH

5

6 (seychellene) (cycloseychellene)

Scheme I

While several groups reported total⁴ and partial² synthesis of norpatchoulenol (1), there seems to be no reports of the synthetic studies on the metabolites of parchouli alcohol (2) . 3 and 4 . During the past several years, we have been engaged in synthetic studies on the sesquiterpenoids of patchoulane type, culminating in the synthesis of patchouli alcohol (2), Jd seychellene (5) , $\tilde{}$ and cycloseychellene (6) . $\tilde{}$ As part of our continuing studies in this field, we describe herein the first total synthesis of hydroxy patchouli alcohol (2) and the carboxylic acid 4 in racemic forms. Synthesis of racemic norpatchoulenol (1) from 3 in biogenetic manner is also described.

One of the key steps in the present synthesis is a double cyclization reaction of a conjugated cyclohexenone aldehyde 7 having desired stereochemistry at two asymmetric centers _ to give a tricyclic keto nitrile <u>8</u>. The preparation of the compound <u>7</u> started from readily available 1-methoxy-5-methylbicyclo[2.2.1]oct-5-en-2-one (9).⁶ Stereoselective alkylation of the lithium enolate derived from the ketone 9 (LDA, THF, $-78 °C$, 1 h) with 4-iodobutanal dimethyl acetal \cdot \cdot \cdot (THF-HMPA, -20 °C, 1 h) afforded the alkylated ketone $\underline{10}^{\circ}$ (colorless oil, 78% 9a) as a single isomer. This high stereoselectivity in the alkylation may be due to kinetic preference for approach of alkylating reagent from less hindered face of the bicyclic enone $\frac{9}{2}$ (i.e., syn to the double bond in 9).¹⁰ The alkylated ketone 10 was converted (NH₂OH·HC1-AcONa, aqueous MeOH, reflux, 9 h) into the oxime 11^8 (colorless oil, 99%^{9b}). Beckmann fragmentation reaction of the oxime 11 under the controlled conditions (TsC1-LiC1, Py, room temp., 7 h) yielded the conjugated enone $\underline{12}^{\circ}$ [mp 55-56 °C (cyclohexane), 54%⁷⁰],¹¹ which was deacetalized (AcOH-H₂0, 60 °C, 2.5 h) to provide the desired conjugated cyclohexenone aldehyde 7^{12} (colorless oil).

Double cyclization of the enone aldehyde $\frac{7}{1}$ proceeded smoothly on treatment with Et_2NH (aqueous MeOH, 70 °C, 2 h) to give the tricyclic keto nitrile $8^{3,13}$ [mp 205-206 °C (CHCl₂), 40% overall yield^~ from $\underline{12}$. Conversion of the keto nitrile <u>8</u> into the diol $\underline{13},$ mp $128\text{--}130$ $^{\circ}$ C (hexane-ether), was executed in 75% overall yield^{14a} by four steps: (1) thioacetalization (HSCH₂CH₂SH, BF₃.OEt₂, room temp., 1.5 h); (2) reduction (DIBAL, toluene-CH₂C1₂, -78 °C, 1.5 h); (3) reduction (NaBH₄, MeOH, room temp., 30 min); (4) desulfurization (Raney Ni, EtOH, reflux, 1 h). The primary hydroxyl group of the diol 13 was selectively protected (t-BuMe₂Si-

Cl, DMAP-Et₃N, CH₂Cl₂, room temp., 6 h)¹⁵ to afford the silyl ether <u>14</u>⁸ (colorless oil, 99%^{14b}), which upon PCC oxidation¹⁶ (CH₂C1₂, room temp., 45 min) provided the ketone 15^8 (amorphous solid, $87\text{\textdegree}^{14c}$). Bridgehead hydroxylation^{5a} of the lithium enolate generated from the ketone <u>15</u> (LDA, THF, -78 °C, 1 h) with MoO₅ 'Py HMPA¹⁷ (THF, -50 °C, 1 h) yielded the α -hydroxy ketone 16^8 [mp 76-79 °C (pentane), 73% 9^d], conversion of which into the olefin 17^8 [mp 65-66 °C (without recrystallization)] was effected in 77% overall yield 9d by the Johnson's procedure $^{18}\colon$ (1) PhSO(=NMe)CH,Li (THF, 0 °C, 1 h); (2) Al-Hg [THF-AcOH-H,O (100:100:l), $\tilde{}$ room temp., 30 min]. Cyclopropanation²⁰ of the olefin <u>17</u> (CH₂N₂-CuOTf, benzene, room temp., 15 min) 2° proceeded smoothly to give the cyclopropane derivative $\underline{18}^\circ$ (colorless oil, 79% $^\circ$), which was catalytically hydrogenated (PtO₂, AcONa-AcOH, room temp., 1.5 h) to furnish the gem-dimethyl alcohol $\rm \underline{19}^8$ (colorless oil, 83% 9d). Desilylation of the alcohol $\rm \underline{19}$ (Bu $_{\rm 4}$ NF, THF, room temp., 3 h) gave (\pm)-hydroxy patchouli alcohol (3)⁸ [mp 132.5-133 °C (hexane-benzene), 97%^{9e}], the ¹H NMR spectrum of which was identical to that of natural 2. In order to confirm the structure of synthetic $\frac{3}{2}$, acetylation of $\frac{3}{2}$ (Ac₂0-Py, room temp., 2.5 h) was made to give the corresponding acetate 20° (amorphous solid, 85%⁻⁴), the spectral (IR, \overline{a} NMR, and mass) properties of which were identical in all respects to those of the authentic sample derived from natural 3 . PDC oxidation²¹ of (\pm)-3 (DMF, room temp., 13 h) afforded the (\pm)-carboxylic acid 4⁸ (colorless oil, 97%^{9a}), another biooxidation product of patchouli alcohol (2). The 1_H NMR spectrum of the methyl ester 21^8 (colorless oil, 47%^{14e}) derived from the ([±])-carboxylic acid $\frac{4}{1}$ (CH₂N₂) was identical to that of the authentic sample obtained from natural $\frac{4}{1}$.

Finally, decarboxylative oxidation of (±)- $\frac{4}{3}$ under the Kochi's conditions 2,22 gave (\pm)-norpatchoulenol ($\frac{1}{2}$ ⁸ (amorphous solid, 33%^{14f}). Sublimation (35 °C, 1 mmHg) afforded pure (\pm)-1, mp 155-160 °C (sealed tube).²³ The ¹H NMR, IR, and mass spectral properties of synthetic $\underline{1}$ were completely identical in all respects to those of natural $\underline{1}$.

Acknowledgments: Pasteur, France) for providing us with the spectral copies of the authentic samples (<u>1</u>, <u>3</u>, <u>20</u>, and 21). Financial support from the Ministry of Education, Science, and Culture (Grant-in-Aid for Special Project Research, Innovative Studies in Highly Selective Synthesis) is gratefully acknowledged. We express our cordial gratitudes to Professor G. Ourisson (Univ. Louis

References and Notes

- 1. (a) Teisseire, P.; Maupetit, P.; Corbier, B. Recherches (RBD) 1974, No. 19, 8. (b) Teisseire, P.; Maupetit, P.; Corbier, B.; Rouillier, P. Recherches (RBD) 1974, No. 19, 36. (c) Oberhänsli, W. E.; Schönholzer, P. Recherches (RBD) 1974, No. 19, 62.
-
- 2. Bang, L.; Ourisson, G.; Teisseire, P. Tetrahedron Lett. 1975, 2211.
- 3. Suhara, Y.; Itoh, S.; Ogawa, M.; Yokose, K.; Sawada, T.; Sano, T.; Ninomiya, R.; Maruyama, H. B. Appl. Environ. Microbiol. 1981. 42, 187.
- 4. (a) Teisseire, P.; Pesnelle, P.; Corbier, B.; Plattier, M.; Maupetit, P. Recherches (RBD) 1974, No. 19, 69.
	- (b) Oppolzer, W.; Snowden, R. L. Tetrahedron Lett. 1978 , 3505.
	- (c) Bertrand, M.; Teisseire, P.; Pelerin, G. <u>Tetrahedron Lett. 1980, 21</u>, 2051.
(d) Surthatte chulter: Ones J. J. Thanglades J. (d. 1977–1112)
	- (d) Synthetic studies: Gras, J.-L. Tetrahedron Lett. $1977, 4117$.
- 5. (a) Yamada, K.; Kyotani, Y.; Manabe, S.; Suzuki, M. Tetrahedron 1979 , 35 , 293. (b) Niwa, H.; Ban, N.; Yamada, K. Tetrahedron Lett. 1983, 24, 937.
- 6. Monti, S. A.; Chen, S.-C.; Yang, Y.-L.; Yuan, S.-S.; Bourgeois, O. P. J. Org. Chem. $\frac{1978}{200}$, $\frac{43}{2}$, 4062 .
- 7. Prepared conveniently from ethyl y-bromobutyrate by the sequential reactions in 65% overall yield: (1) reduction (DIBAL, hexane-toluene, -100 'C, 1 h); (2) acetalization (MeOH, NH₄C1, reflux, 10 min); (3) substitution reaction (NaI-CaCO₃, acetone, 25 °C, 1.5 h).
- 8. Satisfactory spectral (IR, 1 H NMR, and mass) and analytical (microanalyses or high resolution mass spectra) data were obtained for this compound.
- 9. Yield after purification by column chromatography on silica gel with: (a) 2:l hexaneether; (b) 1:l hexane-EtOAc; (c) 6:l benzene-acetone; (d) 1O:l hexane-ether; (e) 1:l hexane-ether.
- 10. During our investigations the similar stereoselective alkylation of 9 was reported: Monti, S. A.; Dean, T. R. J. Org. Chem. 1982, 47, 2679.
- 11. The reaction under the same conditions in the absence of LiCl provided a considerable amount of an undesired product 1^{12a} (ca. 30%).
- 12. (a) IR, 1 H NMR, and mass spectral data of this compound were in accord with the structure assigned. (b) This compound was used for the next reaction without further purification. $\frac{1}{1}$
- 13. Stereochemistry of the hydroxyl group was not determined.
- 14. Yield after purification by preparative TLC on silica gel with: (a) 2:l benzeneacetone; (b) 3:l benzene-acetone; (c) 1:l hexane-ether; (d) 1:2 hexane-ether; (e) 2:l hexane-ether; (f) 3:l hexane-ether.
- 15. Chaudhary, S. K.; Hernandez, 0. Tetrahedron Lett. 1979, 99.
- 16. Corey, E. J.; Suggs, J. W. Tetrahedron Lett. 1975, 2647.
- 17. (a) Vedejs, E.; Engler, D. A.; Telschow, J. E. J. Org. Chem. 1978, 43, 188. (b) Mimoun, H.; Seree de Roch, I.; Sajus, L. Bull. Soc. Chim. Fr. 1969, 1481.
- 18. Johnson, C. R.; Kirchhoff, R. A. J. Am. Chem. Soc. 1979, 101, 3602.
- 19. This reductive elimination reaction with Al-Hg depends heavily on the content of H₂O in the solvent system: e.g., the reaction $\bigcap_{\mu\in\mathbb{R}^3}$ OH in 15:5:1 THF-AcOH-H₂O gave an undesired product $\underline{\text{ii}}^{12a}$ (stereochemistry of the newly formed tert-methyl group was not elucidated) in 34% yield together with <u>17</u> (31%).
- 20. Salomon, R. G.; Kochi, J. K. J. Am. Chem. Soc. 1973, 95, 3300.
- 21. Corey, E. J.; Schmidt, G. Tetrahedron Lett. 1979 , 399. $\qquad \qquad \qquad \qquad \frac{11}{10}$
- 22. Bacha, J. D.; Kochi, J. K. <u>Tetrahedron</u> 19<u>68, 24</u>, 2215.
- 23. Lit.^{4b} mp 135-141 °C (Conditions for measurement of mp were not described in ref. 4b).

(Received in Japan 21 March 1984)

